plane angle is much more acute. The summations of the absolute deviations of these dihedral angles from 90°, $\sum \Delta$, are 22.5° for molecule A and 30.0° for molecule B. The rotation of the $\mathrm{N}(1)$ pyridines around the $\mathrm{Os}(1)-\mathrm{N}(1)$ vector is visible in Fig. 2. While electronic effects may be involved, these differences in dihedral angles can be largely attributed to packing forces. There are 28 pyridine \cdots pyridine, pyridine \cdots glycolate, or pyridine \cdots osmyl intermolecular contacts with distances ranging from 3.11 (2) to 3.60 (2) \AA.

Variations in the bend of the osmyl groups of the two molecules do not appear to be directly due to crystal packing effects. Both of the osmyl groups have seven intermolecular contacts and the ranges and averages of the contact distances are virtually the same. Yet the $\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(2)$ angle of $167.5(4)^{\circ}$ for molecule A is significantly larger than the $165.2(4)^{\circ}$ value of molecule B. This indicates that osmyl angle differences between these molecules may be attributed to electronic effects arising from the variations in pyridine-ring-to-central-plane dihedral angles.

The rationale for such an effect is based upon the ability of the pyridines to act as π acids, and the involvement of osmium $d_{x z}$ and $d_{y z}$ electron orbitals in Os-O bonding in the osmyl group. Rotations of the planes of the pyridine molecules which tend to facilitate overlap between these electron orbitals on the Os atom with the pyridine π-antibonding orbitals, provide the means to distort the π-electron distribution of the osmyl
group, leading to the bend. The rationale would go on to say that the larger the $\sum \Delta$ value, the more pronounced will be the osmyl bend angle. Support for this argument may be found in the osmyl oxobenzoato complex reported previously (Hinckley et al., 1987). In this compound the dihedral angles of the two pyridine ligands to the central plane are 77.5 and 90.5° respectively, yielding a $\sum \Delta$ value of 13.0°, and the $\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(2)$ angle is $169.8(3)^{\circ}$. In the narrow range of $\mathrm{O}-\mathrm{Os}-\mathrm{O}$ angles spanned by this group of three molecules, the relationship between $\sum \Delta$ and $\mathrm{O}-\mathrm{Os}-\mathrm{O}$ angle is linear within experimental error.

This work was supported by the Southern Illinois University Materials Technology Center.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71 and 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Hinckley, C. C. \& Kibala, P. A. (1986). Polyhedron, 5, 1119-1124.
Hinckley, C. C., Kibala, P. A. \& Robinson, P. D. (1987). Acta Cryst. C43, 842-844.
Molecular Structure Corporation (1985). TEXSAN Structure Analysis Package. MSC, 3304 Longmire Drive, College Station, TX 77840, USA.
Schuster, P., Zundel, G. \& Sandorfy, C. (1976). The Hydrogen Bond, p. 411. Amsterdam: North-Holland.

A (Dithioformato)rhodaselenaborane Complex: [2,2-($\left.\left.\eta^{2}-\mathbf{S}_{2} \mathbf{C H}\right)-\mathbf{2 -}\left(\mathbf{P P h}_{3}\right)-\mathbf{1 , 2 - S e R h B} 10 \mathbf{H}_{10}\right]$

By George Ferguson
 Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G $2 W 1$

and Faridoon and Trevor R. Spalding
Chemistry Department, University College, Cork, Ireland
(Received 7 January 1988; accepted 24 March 1988)

Abstract

Dithioformato)-2-(triphenylphosphine)-1-selena-2-rhoda-closo-dodecaborane(12), $\quad \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~B}_{10^{-}}$ $\mathrm{PRhS}_{2} \mathrm{Se}, \quad M_{r}=639.5$, monoclinic, $\quad P 2_{1} / n, \quad a=$ 12.874 (2),$\quad b=13.847$ (2), $\quad c=14.612$ (3) $\AA, \quad \beta=$ 94.16 (1) ${ }^{\circ}, \quad V=2598 \AA^{3}, \quad Z=4, \quad D_{x}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=22.6 \mathrm{~cm}^{-1}, \quad F(000)=$ 1264, $T=298 \mathrm{~K}, R=0.023$ for 3555 observed reflections. In the title compound the Rh atom is bonded to a bidentate $\mathrm{S}_{2} \mathrm{CH}$ ligand asymmetrically $[\mathrm{Rh}-\mathrm{S}$ 2.328 (1), 2.406 (1) \AA], a PPh_{3} ligand [$\mathrm{Rh}-\mathrm{P}$ 0108-2701/88/081368-04\$03.00

2.385 (1) \AA], and an SeB_{4} face of an $\mathrm{SeB}_{10} \mathrm{H}_{10}$ cluster ligand [Rh-Se 2.4395 (4), $\quad \mathrm{Rh}-\mathrm{B} \quad 2.223$ (4)2.293 (4) \AA]. The RhSeB_{10} cage is the basis of a 12-atom closo structure. The conformation of the $\eta^{2}-\mathrm{S}_{2} \mathrm{CHRh}$ unit above the SeB_{4} face is such that the shorter $\mathrm{Rh}-\mathrm{S}$ bond is directly trans to the Se atom and the $\mathrm{S}-\mathrm{Rh}-\mathrm{S}$ angle is $72.20(3)^{\circ}$.

Introduction. From a study of the reactions of $\left[2,2-\left(\mathrm{PPh}_{3}\right)-2-(\mathrm{H})-1,2-M M^{\prime} \mathrm{B}_{10} \mathrm{H}_{10}\right] \quad(M=\mathrm{Se}$ or Te , © 1988 International Union of Crystallography
$M^{\prime}=\mathrm{Rh}$ or Ir) compounds with CS_{2}, we have isolated a complex ($M=\mathrm{Se}, M^{\prime}=\mathrm{Rh}$) which contains the bidentate dithioformato $\left(\mathrm{S}_{2} \mathrm{CH}\right)$ ligand (Faridoon, Ferguson, Fontaine, Kennedy \& Spalding, 1988). Although complexes containing this ligand bonded to a metal are not unknown (Butler \& Fenster, 1974), for example $\left[\mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{CH}\right)\right.$] (Albano, Bellon \& Ciani, 1971), none has been characterized which also contains a metal-bonded heteroborane cage. A previously reported cluster compound $\left[\mathrm{Co}\left\{B, B^{\prime}-\mu-\mathrm{S}_{2}-(1,2-\right.\right.$ $\left.\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2}\right\}\right]$ (Churchill, Gold, Francis \& Hawthorne, 1969) contained an $\mathrm{S}_{2} \mathrm{CH}$-bridged biscarbaborane system bonded to Co but direct Co to $\mathrm{S}_{2} \mathrm{CH}$ bonding was not involved.

Experimental. Pale-yellow plate crystals were grown from dichloromethane. Accurate cell dimensions and crystal-orientation matrix determined on a CAD-4 diffractometer by a least-squares treatment of the setting angles of 25 reflections in the range $10<$ $\theta<14^{\circ}$. Crystal dimensions $0.16 \times 0.26 \times 0.43 \mathrm{~mm}$; intensities of reflections with indices $h 0$ to $16, k 0$ to 17 , $l-18$ to 18 , with $2<2 \theta<54^{\circ}$ measured; $\omega-2 \theta$ scans; ω-scan width $(0.60+0.35 \tan \theta)^{\circ}$; graphite-monochromated Mo $K \alpha$ radiation; intensities of three reflections measured every 2 h showed no evidence of crystal decay. 6241 reflections measured, 5658 unique, 3555 with $I>5 \sigma(I)$ labelled observed and used in structure solution and refinement; $R_{\text {int }}=0.016$. Data corrected for Lorentz, polarization and absorption effects (max. and min. transmission factors $0.717,0.572$), Gaussian integration, space group $P 2_{1} / n$ uniquely from systematic absences $h 0 l, h+l=2 n+1,0 k 0, k=2 n+1$. The coordinates of the Rh and Se atoms were determined from analysis of the three-dimensional Patterson function and those of the remaining non-H atoms were found via the heavy-atom method. Refinement was by full-matrix least-squares calculations on F. Initially with isotropic and then with anisotropic thermal parameters. At an intermediate stage in the refinement, difference maps showed maxima in positions consistent with the expected locations of the H atoms; in the final rounds of calculations the H atoms were positioned on geometrical grounds ($\mathrm{C}-\mathrm{H} 0.95, \mathrm{~B}-\mathrm{H} 1.08 \AA$) and included (as riding atoms) in the structure-factor calculations. The final cycle of refinement included 308 variable parameters, $R=0.023, w R=0.034$, good-ness-of-fit $1.03, \quad w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.055\left(F_{o}\right)^{2}\right]$. Max. shift/e.s.d. was less than 0.005 ; density in final difference map $0.47 \mathrm{e} \AA^{-3}$ adjacent to Rh and Se atoms, no chemically significant features. Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). All calculations were performed on a PDP11/73 computer using SDP-Plus (B. A. Frenz \& Associates, Inc., 1983). Atomic coordinates and details of

Table 1. Positional and thermal parameters and e.s.d.'s

	x	y	z	$B^{*}\left(\AA^{2}\right)$
Rh	-0.00140 (2)	0.04358 (2)	0.24505 (2)	$2 \cdot 243$ (4)
Se	-0.07565 (3)	0.10384 (3)	0.38299 (2)	3.331 (7)
S 1	0.06820 (7)	-0.02473 (7)	0.11738 (7)	3.98 (2)
S2	0.16617 (7)	-0.02289 (7)	0.29407 (7)	4.15 (2)
P	0.08669 (6)	0.18792 (6)	0.20660 (5)	$2 \cdot 18$ (1)
C1	0.1736 (3)	-0.0530 (3)	0.1855 (3)	4.51 (9)
C11	0.0336 (2)	0.2576 (2)	0.1089 (2)	2.52 (6)
C12	0.0868 (2)	0.3410 (3)	0.0845 (2)	3.09 (6)
C13	0.0557 (3)	$0 \cdot 3912$ (2)	0.0070 (2)	3.50 (7)
C14	-0.0288 (3)	0.3595 (3)	-0.0483 (3)	4.34 (8)
C15	-0.0813 (3)	0.2771 (3)	-0.0254 (3)	4.59 (8)
C16	-0.0506 (3)	0.2270 (2)	0.0536 (2)	$3 \cdot 24$ (7)
C21	0.0908 (2)	0.2713 (2)	0.3038 (2)	2.36 (6)
C22	0.1385 (2)	0.2432 (2)	0.3879 (2)	2.79 (6)
C23	0.1447 (3)	$0 \cdot 3060$ (3)	0.4626 (2)	3.46 (7)
C24	$0 \cdot 1004$ (3)	$0 \cdot 3964$ (3)	0.4530 (2)	3.96 (8)
C25	0.0488 (3)	0.4234 (3)	0.3712 (3)	3.85 (8)
C26	0.0435 (3)	0.3616 (2)	$0 \cdot 2973$ (2)	3.06 (6)
C31	0.2214 (2)	0.1803 (2)	0.1738 (2)	2.51 (5)
C32	$0 \cdot 3072$ (2)	$0 \cdot 1980$ (3)	0.2355 (2)	3.36 (7)
C33	0.4067 (3)	0.2016 (3)	$0 \cdot 2056$ (3)	4.11(8)
C34	0.4224 (3)	0.1871 (3)	$0 \cdot 1154$ (3)	$4 \cdot 26$ (8)
C35	0.3400 (3)	0.1669 (3)	0.0542 (2)	4.30 (8)
C36	0.2398 (3)	0.1625 (3)	0.0831 (2)	3.63 (7)
BI	-0.0691 (3)	-0.0529 (3)	0.3536 (3)	3.51 (8)
B2	-0.1120 (3)	-0.0820 (3)	0.2383 (3)	3.16 (8)
B3	-0.1589 (3)	0.0241 (3)	0.1746 (3)	2.85 (7)
B4	-0.1494 (3)	0.1317 (3)	0.2435 (3)	$2 \cdot 82$ (7)
B5	-0.1946 (4)	-0.0982 (3)	0.3311 (3)	$4 \cdot 11$ (9)
B6	-0.2467 (3)	-0.0568 (3)	0.2222 (3)	3.49 (8)
B7	-0.2690 (3)	0.0700 (3)	0.2299 (3)	3.40 (8)
B8	-0.2376 (3)	$0 \cdot 1076$ (3)	0.3437 (3)	4.02 (9)
B9	-0.1894 (3)	-0.0019 (4)	0.4082 (3)	4.21 (9)
B10	-0.2915 (3)	-0.0082 (4)	0.3227 (3)	4.08 (9)

* Anisotropically refined atoms are given in the form of the equivalent isotropic thermal parameter defined as $\frac{4}{3}\left[a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+a b \cos \gamma B_{12}\right.$ $\left.+a c \cos \beta B_{13}+b c \cos \alpha B_{23}\right]$.
molecular geometry are given in Tables 1 and 2.* Figs. 1 and 2 are views of the molecule prepared using ORTEPII (Johnson, 1976).

Discussion. The Rh atom is bonded asymmetrically to the bidentate $\mathrm{S}_{2} \mathrm{CH}$ ligand with the S 1 atom trans to the Se exhibiting a stronger interaction with $\mathrm{Rh}\{\mathrm{Rh}-\mathrm{Sl}$ 2.328 (1) \AA] than S2 [Rh-S2 2.406 (1) \AA] (Figs. 1 and 2). The $S-C$ bond lengths show a slight difference [S1-C 1.669 (4); S2-C 1.650 (5) \AA]. The S-C-S angle of $114.4(2)^{\circ}$ is less than 120° presumably because of the ligand bite; the $\mathrm{RhS}_{2} \mathrm{C}$ atoms are almost coplanar (angle between the three-atom planes is $2 \cdot 6^{\circ}$). In the (dithioformato)Re complex $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2^{-}}\right.$ $\left(\mathrm{S}_{2} \mathrm{CH}\right)$] (Albano, Bellon \& Ciani, 1971), the bonding of the $\mathrm{S}_{2} \mathrm{CH}$ group to the metal is more asymmetric $[R e-S 12.500(3)$ and $\operatorname{Re}-S 22.532$ (2) \AA] but the $\mathrm{C}-\mathrm{S}$ distances and $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle [S1-C 1.68 (2), S2-C 1.64 (2) \AA and $\left.S-C-S 116.7(1)^{\circ}\right]$ are similar to those observed in the present molecule. In the Re compound, the $\mathrm{Re}-\mathrm{S}$ bonds are both trans to CO groups.

[^0]Table 2. Bond lengths (\AA) and selected bond angles $\left({ }^{\circ}\right)$

Rh	Se	$2.4395(4)$
Rh	S 1	$2.328(1)$
Rh	S 2	$2.406(1)$
Rh	P	$2.385(1)$
Rh	B 1	$2.293(4)$
Rh	B 2	$2.245(4)$
Rh	B 3	$2.223(4)$
Rh	B 4	$2.260(4)$
Se	B 1	$2.215(4)$
Se	B 4	$2.219(4)$
Se	B 8	$2.123(4)$
Se	B 9	$2.122(5)$
S 1	C 1	$1.669(4)$
S 2	C 1	$1.650(5)$
P	C 11	$1.816(3)$
P	C 21	$1.828(3)$
P	C 31	$1.836(3)$
C 11	C 12	$1.401(5)$
C 11	C 16	$1.371(4)$
C 12	C 13	$1.364(5)$
C 13	C 14	$1.379(5)$
C 14	C 15	$1.380(6)$
C 15	C 16	$1.380(5)$
C 21	C 22	$1.389(4)$
C 21	C 26	$1.391(4)$
C 22	C 23	$1.393(5)$
C 23	C 24	$1.378(5)$
C 24	C 25	$1.376(5)$

Se	Rh	S 1	$176.02(3)$
Se	Rh	S 2	$106.35(3)$
Se	Rh	P	$97.44(2)$
Se	Rh	B 1	$55.7(1)$
Se	Rh	B 2	$90.9(1)$
Se	Rh	B 3	$91.4(1)$
Se	Rh	B 4	$56.2(1)$
S 1	Rh	S 2	$72.20(3)$
S 1	Rh	P	$86.24(3)$
S 1	Rh	B 1	$120.3(1)$
S 1	Rh	B 2	$86.0(1)$
S 1	Rh	B 3	$88.3(1)$
S 1	Rh	B 4	$125.7(1)$
S 2	Rh	P	$87.67(3)$
S 2	Rh	B 1	$87.1(1)$
S 2	Rh	B 2	$105.6(1)$
S 2	Rh	B 3	$149.2(1)$
S 2	Rh	B 4	$161.1(1)$
P	Rh	B 1	$149.5(1)$
P	Rh	B 2	$161.7(1)$
P	Rh	B 3	$115.2(1)$
P	Rh	B 4	$87.7(1)$
B 1	Rh	B 2	$46.2(1)$
B 1	Rh	B 3	$82.5(1)$

C25	C26	$1.376(5)$
C31	C32	$1.396(4)$
C31	C36	$1.385(4)$
C32	C33	$1.384(5)$
C33	C34	$1.362(6)$
C34	C35	$1.366(5)$
C35	C36	$1.388(5)$
B1	B2	$1.781(6)$
B1	BS	$1.743(6)$
B1	B9	$1.928(6)$
B2	B3	$1.819(5)$
B2	B5	$1.797(6)$
B2	B6	$1.769(5)$
B3	B4	$1.797(5)$
B3	B6	$1.769(6)$
B3	B7	$1.798(5)$
B4	B7	$1.759(5)$
B4	B8	$1.946(6)$
B5	B6	$1.776(6)$
B5	B9	$1.745(6)$
B5	B10	$1.761(6)$
B6	B7	$1.784(6)$
B6	B10	$1.750(6)$
B7	B8	$1.760(6)$
B7	B10	$1.775(6)$
B8	B9	$1.867(7)$
B8	B10	$1.764(7)$
B9	B10	$1.748(6)$
B1	Rh	B4
B2	Rh	B3

Certain angles around the Rh atom are close to $180 / 90^{\circ}$, implying an 'octahedral' bonding environment [$\mathrm{Se}-\mathrm{Rh}-\mathrm{S} 1$ 176.02 (3), S1-Rh-P 86.24 (3), $\mathrm{S} 2-\mathrm{Rh}-\mathrm{P} 87.67$ (3), $\mathrm{P}-\mathrm{Rh}-\mathrm{B} 487.7$ (1) ${ }^{\circ}$]; however, the bonding of the Rh atom to the cage can be described most simply in terms of two three-centre interactions (Rh-B1-B2 and Rh-B3-B4 opposite P and S 2 atoms, respectively) and a two-centre $\mathrm{Rh}-\mathrm{Se}$ interaction opposite the S 1 atom. The $\mathrm{Rh}-\mathrm{B}$ bonds adjacent to the Se atom [Rh-B1 2.293 (4) and $\mathrm{Rh}-\mathrm{B} 4$ 2.260 (4) \AA] are longer than those remote from the Se atom [Rh-B2 2.245 (4) and Rh-B3 2.223 (4) \AA]. The $\mathrm{Se}-\mathrm{B}$ bonds similarly fall into two groups, with $\mathrm{Se}-\mathrm{B}$ adjacent to the Rh atom [$\mathrm{Se}-\mathrm{B} 12.215$ (4) and $\mathrm{Se}-\mathrm{B} 2$ 2.219 (4) \AA] longer than those remote from the Rh atom [$\mathrm{Se}-\mathrm{B} 82.123$ (4) and $\mathrm{Se}-\mathrm{B} 92 \cdot 122$ (4) \AA].
$B-B$ bond lengths $[1.743$ (6)-1.946 (6) \AA] are within the normal range of values observed in boranes and their metallo derivatives (Kennedy, 1986). The Rh-P bond length of 2.385 (1) \AA is typical for such bonds.

The $\mathrm{Rh}-\mathrm{Se}$ bond distances of 2.4395 (4) \AA may be compared to values of 2.494 (1), 2.531 (1) \AA observed in the diselenium-bridged compound [(triphos) $\mathrm{Rh}(\mu$ $\left.\mathrm{Se}_{2}\right)_{2} \mathrm{Rh}($ triphos $\left.)\right]^{2+}$ (Bianchini, Mealli, Meli \& Sabat, 1985) and 2.514 (4) \AA found in $\left[\mathrm{RhCl}\left(\mathrm{CSe}_{2}\right)\right.$ (triphos)] (Bianchini, Mealli, Meli \& Sabat, 1984) [triphos is $\left.\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{3} \mathrm{CMe}\right]$. The short $\mathrm{Rh}-\mathrm{Se}$ distance in the title compound is taken as evidence for an essentially two-centre two-electron bond in this part of the cage. The dimensions of the triphenylphosphine moiety are similar to those observed in other rhodium-phosphine complexes (Faridoon, Ferguson, Fontaine, Kennedy \& Spalding, 1988). There are no unusual intermolecular contacts.

Fig. 1. A general view of the complex showing the crystallographic numbering scheme. Phenyl-ring C atoms are numbered $\mathrm{C} i 1-\mathrm{Ci}$, $i=1,2,3$.

Fig. 2. A view normal to the SeB_{4} plane showing the orientation of the $\eta^{2}-\mathrm{S}_{2} \mathrm{CH}$ and phosphine ligands on the Rh atom.

GF thanks NSERC Canada for Grants in Aid of Research. Part of this work was supported by a grant from the Department of Education, Ireland (F), and the loan of Rh chemical from Johnson Matthey plc, England, is gratefully acknowledged (TRS).

References

Albano, V. G., Bellon, P. L. \& Ciani, G. (1971). J. Organomet. Chem. 31, 75-87.
B. A. Frenz \& Associates, Inc., (1983). SDP-Plus. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands.

Bianchini, C., Mealli, C., Meli, A. \& Sabat, M. (1984). J. Chem. Soc. Chem. Commun. pp. 1647-1648.
Bianchini, C., Mealli, C., Meli, A. \& Sabat, M. (1985). J. Am. Chem. Soc. 107, 5317-5318.
Butler, I. S. \& Fenster, A. E. (1974). J. Organomet. Chem. 18, 161-193.
Churchill, M. R., Gold, K., Francis, J. N. \& Hawthorne, M. F. (1969). J. Am. Chem. Soc. 91, 1222-1223.

Faridoon, Ferguson, G., Fontaine, X. L. R., Kennedy, J. D. \& Spalding, T. R. (1988). In preparation.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennedy, J. D. (1986). Prog. Inorg. Chem. 34, 21 I-434.

A cyclo-Boronated Rhodatelluraborane Complex: [2-(PPh_{3})-2-(H)-2-($\left.\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right)$-1,2-TeRhB ${ }_{10} \mathrm{H}_{9}$]

By George Ferguson
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
and Faridoon and Trevor R. Spalding
Chemistry Department, University College, Cork, Ireland

(Received 7 January 1988; accepted 24 March 1988)

Abstract

Triphenylphosphinato- P, C)-2-(tri-phenylphosphine- P)-1-tellura-2-rhoda-closo-dodecaborane (12), $\quad \mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~B}_{10} \mathrm{P}_{2} \mathrm{RhTe}, \quad M_{r}=872 \cdot 3$, monoclinic, $\quad P 2_{1} / a, \quad a=21.958$ (3), $\quad b=14.738$ (3), $\quad c=$ 11.599 (2) $\AA, \quad \beta=92.80(2)^{\circ}, \quad V=3749 \AA^{3}, \quad Z=4$, $D_{x}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $13.2 \mathrm{~cm}^{-1}, F(000)=1728, T=298 \mathrm{~K}, R=0.030$ for 5212 observed reflections. The Rh atom is bonded to two phosphine ligands $\left\{\mathrm{PPh}_{3}[2.364\right.$ (1) $\AA]$ and $\mathrm{Ph}_{2^{-}}$ $\mathrm{PC}_{6} \mathrm{H}_{4}-[2.311$ (1) $\left.\AA]\right\}$, an H atom ($\mathrm{Rh}-\mathrm{H} 1.33 \AA$) and a TeB_{4} face of the TeB_{10} cage $[\mathrm{Rh}-\mathrm{Te}$ 2.5656 (4) \AA]. The cage structure of the complex can be described as a derivative of closo- $\left[\mathrm{B}_{12} \mathrm{H}_{12}\right]^{2-}$. The formation of $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}$ to B bond (cyclo-boronation) produces an $\mathrm{Rh}-\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{B}$ ring in which the Rh atom is $0.25 \AA$ from the $\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{B}$ plane. The two Rh-B distances to the B atoms which are also attached to the Te atom are distinctly longer [2.329 (4), 2.331 (4) \AA] than the $\mathrm{Rh}-\mathrm{B}$ distances to the two B atoms not attached to the Te atom [2.263(5), 2.302 (5) \AA]. Similarly, the two Te-B distances to B atoms also attached to the Rh atom are longer [2.379 (4), $2.439(5) \AA$] than the $\mathrm{Te}-\mathrm{B}$ distances to non-Rh-bonded B atoms [2.294 (5), $2 \cdot 301$ (5) \AA].

0108-2701/88/081371-04\$03.00

Introduction. It is noticeable that in the chemistry of metallaboranes containing the PPh_{3} ligand bonded to a Co, Rh or Ir atom, cyclo-boronated compounds have only been reported for Ir (Kennedy, 1986). Examples of such compounds which have been structurally characterized include $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right)(\mathrm{H}) \mathrm{IrB}_{9} \mathrm{H}_{8}\right]$ (Bould, Greenwood, Kennedy \& McDonald, 1982), $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right) \mathrm{IrB}_{9} \mathrm{H}_{7}\right.$ or $\left.9\left(\mathrm{PPh}_{3}\right)\right]$ (Kennedy, 1986), $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right)(\mathrm{H}) \mathrm{IrB}_{9} \mathrm{H}_{12}\right]$ (Bould, Crook, Greenwood \& Kennedy, 1983) and [($\left.\mathrm{PPh}_{3}\right)$ $\left.\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right)(\mathrm{H}) \mathrm{IrB}_{9} \mathrm{H}_{10}\left(\mathrm{PPh}_{3}\right)\right]$ (Kennedy, 1986). No rhodium counterparts have been reported. In metallacarbaborane chemistry fewer cyclo-boronated compounds are known but $\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right) \mathrm{IrB}_{8}-\right.$ $\mathrm{H}_{6}(\mathrm{OMe}) \mathrm{C}(\mathrm{OH})$] (Crook, Greenwood, Kennedy \& McDonald, 1981) has been reported. The Rh complexes $\quad\left[1,3-\left(\eta^{2}-3-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)\right.$-3-(H)-3- $\left(\mathrm{PPh}_{3}\right)$ -3,1,2-RhC ${ }_{2} \mathrm{~B}_{9} \mathrm{H}_{10}$] (Delaney, Knobler \& Hawthorne, 1981) and $\left[1,3-\mu-2,3-\mu-\left\{1,2-\mu-\left(\eta^{2}-3,4-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.\right.\right.$ $\left.\left.(\mathrm{Me})=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right\}-3-(\mathrm{H})-3-\left(\mathrm{PPh}_{3}\right)-3,1,2-\mathrm{RhC}_{2}-$ $\mathrm{B}_{9} \mathrm{H}_{9}$] (Delaney, Teller \& Hawthorne, 1981) which contain carbaborane C atoms bonded to organic side chains have also been structurally characterized. The title compound was isolated in low yield from the
(c) 1988 International Union of Crystallography

[^0]: * Lists of structure factors, all bond angles, thermal parameters, calculated H -atom coordinates and mean-plane data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44901 (44 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

